Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Bo Hu, Xiao-Tao Deng, Cheng-Gang Wang* and Xiao-Yan Wang

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail:
wangcg23@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.053$
$w R$ factor $=0.134$
Data-to-parameter ratio $=17.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 2,2'-(Propane-1,3-diyl)bis(benzimidazolium) dichloride dihydrate

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, anions, cations and water molecules are linked into a two-dimensional framework by a combination of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

## Comment

Interest in bis(2-benzimidazolyl)alkanes is widespread, due to their wide-ranging antiviral activity (Roderick, et al., 1972; Salunke et al., 1994). We report here the crystal structure of such a compound, (I). The asymmetric unit of (I) is shown in Fig. 1. It contains one $\mathrm{H}_{2} \mathrm{dbz}$ [ $\mathrm{dbz}=1,3$-bis(2-benzimidazolyl)propane] cation, two chloride anions and two solvent water molecules. In (I), the two imine N atoms of the dbz cation are protonated, unlike in a previously reported structure (Sun et al., 2004). All the bond lengths and angles in the organic cation are normal (Allen et al., 1987).


In the crystal structure, anions, cations and water molecules are linked into a two-dimensional layer structure parallel to the $a c$ plane by a combination of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Fig. 2 and Table 1). There are also significant $\pi-\pi$ stacking interactions involving four different rings; $C g 1, C g 2, C g 3$ and $C g 4$ are the centroids of the ring atoms $\mathrm{N} 1 / \mathrm{C} 12 / \mathrm{C} 17 / \mathrm{N} 2 / \mathrm{C} 11, \mathrm{~N} 3 /$ C1/C6/N4/C7, C1-C6, and C12-C17, respectively. The relevant centroid-centroid and perpendicular distances defining these interactions are 3.6231 (13) and $3.451 \AA$ for $C g 1 \cdots C g 2^{i}$ [symmetry code: (i) $\left.x, \frac{1}{2}-y, \frac{1}{2}+z\right], 3.5990$ (13) and $3.450 \AA$ for $C g 1 \cdots C g 3^{\mathrm{i}}$, and 3.8079 (15) and $3.506 \AA$ for $C g 1 \cdots C g 4^{\mathrm{ii}}$ [symmetry code: (ii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$ ].

## Experimental

1,3-Bis(2-benzimidazolyl)propane (dbz) was prepared according to a literature method (van Albada et al., 1995; Wang \& Joullié, 1957). $\mathrm{Dbz}(0.27 \mathrm{~g}, 1 \mathrm{mmol})$ was then added to a mixture of $\mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The solution was ajusted to $\mathrm{pH}=1$ (using concentrated HCl ) and then stirred for 30 min at room temperature. The pale-yellow solution was allowed to stand at room temperature and
red crystals suitable for X-ray diffraction were obtained over a period of about one week.

## Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=385.29$
Monoclinic, $P 2_{1} / c$
$a=9.6420$ (8) А
$b=13.6336$ (11) A
$c=16.9921$ (10) $\AA$
$\beta=123.729(3)^{\circ}$
$V=1857.7(2) \AA^{3}$

## Data collection

Bruker SMART CCD
diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\text {min }}=0.882, T_{\text {max }}=0.930$

## Refinement

## Refinement on $F^{2}$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.134$
$S=1.05$
4242 reflections
250 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.378 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.37 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.35 \times 0.22 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

13103 measured reflections 4242 independent reflections 3203 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$
$\theta_{\max }=27.5^{\circ}$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0648 P)^{2}\right. \\
\quad+0.3667 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
\end{array}=0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$ | $0.851(12)$ | $2.295(13)$ | $3.0971(18)$ | $157(2)$ |
| $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{ii}}$ | $0.86(3)$ | $1.885(12)$ | $2.726(3)$ | $167(2)$ |
| $\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1$ | $0.86(3)$ | $2.308(13)$ | $3.1349(19)$ | $160(2)$ |
| $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$ | $0.86(3)$ | $1.86(3)$ | $2.703(2)$ | $164(3)$ |
| $\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{C} 1{ }^{\mathrm{i}}$ | $0.82(3)$ | $2.29(3)$ | $3.1055(18)$ | $176(3)$ |
| $\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2$ | $0.82(3)$ | $2.305(11)$ | $3.1253(19)$ | $174(3)$ |
| $\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 1^{\mathrm{iii}}$ | $0.81(3)$ | $2.34(3)$ | $3.142(2)$ | $170(4)$ |
| $\mathrm{O} 2-\mathrm{H} 2 C \cdots \mathrm{Cl} 2$ | $0.82(4)$ | $2.35(4)$ | $3.159(2)$ | $172(3)$ |

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z+1$; (iii) $x-1,-y-\frac{3}{2}, z-\frac{1}{2}$.
H atoms bonded to O and N atoms were located in difference maps and then included in the refinement with bond-length restraints of $\mathrm{O}-\mathrm{H}=0.82(1) \AA$ and $\mathrm{N}-\mathrm{H}=0.86(1) \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{N}, \mathrm{O}) . \mathrm{H}$ atoms bonded to C atoms were placed in calculated positions and included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ $=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

This work is supported by the Hubei Key Laboratory of Novel Chemical Reactions and Green Chemical Technology (No. RCT2004011).



Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the $50 \%$ probability level.


Figure 2
Part of the crystal structure of (I), showing the hydrogen bonds as dashed lines.

## References

Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. L. \& Reedijk, J. (1995). Inorg. Chem. 34, 4910-4917.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Roderick, W. R., Nordeen, C. W., Von Esch, A. M. Jr \& Appell, R. N. (1972). J. Med. Chem. 15, 655-658.
Salunke, N. M., Revankar, V. K. \& Mahale, V. B. (1994). Transition Met. Chem. 19, 53-56.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sun, Y., Liu, X.-H., Zhang, X., Song, H.-B. \& Liu, X.-L. (2004). Chin. J. Struct. Chem. 23, 803-807.
Wang, L. L.-Y. \& Joullié, M. M. (1957). J. Am. Chem. Soc. 79, 5706-5708.


[^0]:    © 2006 International Union of Crystallography All rights reserved

